Digital Logic (CSC-151) Tribhuvan University

Soch College of Information Technology

Bachelor of Science in Computer Science and Information Technology

Course Title: Digital Logic

Course no: CSC-151 ----- Full Marks: 60+20+20

Credit hours: 3 ----- Pass Marks: 24+8+8 **Nature of course:** Theory (3 Hrs.) + Lab (3 Hrs.)

Course Synopsis: General concepts to be used in the design and analysis of digital systems and

introduces the principles of digital computer organization and design.

Goals:

Introduce fundamental digital logics and switching networks. Exposure of Boolean algebra and its application for circuit analysis.

Introduction to multilevel gates networks, flip-flops, counters and logic devices.

Course Contents:

Unit 1. Binary Systems ----- 7 Hrs.

Digital Systems, Binary Numbers, Number base conversion, Octal and hexadecimal numbers, Binary Systems, Integrated Circuits

Unit 2. Boolean algebra and Logic Gates ----- 6 Hrs.

Basic definition of Boolean Algebra, Basic Theory of Boolean Algebra, Boolean Function, Logic operations, Logic Gates, IC Digital Logic Families

Unit 3. Simplification of Boolean Functions ----- 6 Hrs.

K-map, Two and three Variable Maps, Four variable Maps, Product of Sums, sum of product simplification, NAND and NOR implementation

Unit 4. Combinational Logic ----- 6 Hrs.

Design Procedure, Adders, Subtractors, Code Conversion, Analysis Procedure, NAND Circuits, NOR Circuits, Exclusive -OR Circuit

Unit 5. Combinational Logic with MSI and LSI ----- 6 Hrs.

Binary Parallel Adder, Decimal Adder, Magnitude Comparator, Decoders, Multiplexers, Read-Only- Memory (ROM), Programmable Logic array (PLA)

Unit 6. Sequential Logic ----- 8 Hrs.

Flip-flops, Triggering of flip-flops, Design procedure, Design with state equations and state reduction table.

Unit 7. Registers and Counters ----- 6 Hrs.

Resisters, Shift registers, Ripple Counters, Synchronous Counters, Timing Sequences, The Memory Unit

Laboratory works:

Familiarization with logic gates

Encodes and decodes

Multiplexer and de-multiplexer
Design of simple combination circuits
Design of adder/subtractor
Design f Flip-Flop
Clock driven sequential circuits
Conversion of parallel data into serial format
Generation of timing signal for sequential system

Text Book:

M. Morris Mao, "Logic & Computer Design Fundamentals", Pearson Education.